本综述文章探讨了质子交换膜水电解槽(PEMWE)阳极的工程设计,以提升其性能并降低成本。PEMWE被广泛认为是大规模制氢的理想技术,因其高效、稳定和高输出压力。然而,当前使用的铱基催化剂虽然活性和稳定性优秀,但高昂的成本限制了其大规模应用。本文总结了多孔传输层(PTL)、催化剂层(CL)和质子交换膜(PEM)在阳极界面工程中的最新进展,提出了优化这些关键组件以提高充放电传输、质量传输和催化剂利用率的方法。
成果简介
综述文章提出,通过合理设计PTL、PTL/CL界面和PEM/CL界面,可以显著提升PEMWE的性能并降低其成本。本文首先总结了目前对PTL材料、结构和两相传输特性的理解,然后讨论了阳极界面工程方法和催化剂涂层技术。
研究亮点
PTL材料和结构:总结了不同PTL材料的优缺点,并讨论了PTL的孔隙大小、孔隙率、厚度和孔隙梯度等结构特性对电解槽性能的影响。
界面工程策略:探讨了PEM/CL和PTL/CL界面工程的方法,包括构建3D界面、增加中间层以及直接膜沉积等技术。
催化剂涂层技术:介绍了多种催化剂涂层技术及其在提高界面稳定性和电催化性能方面的应用。
未来方向:提出了未来阳极设计的发展方向,强调了组件集成对降低成本和提高效率的重要性。
配图精析
图1:展示了PEMWE的可持续H₂生产示意图及典型PEMWE堆栈的成本分布
图2:展示了未涂层和Ir涂层PTL在4000小时操作前后的光学和SEM图像,以及不同层数Ti颗粒喷涂PTL的横截面SEM图像
展望
综述文章总结了PEMWE阳极工程设计的最新进展,强调了合理设计PTL、PTL/CL界面和PEM/CL界面的重要性。这些设计策略不仅可以提升PEMWE的性能,还能显著降低其成本。未来的研究方向包括进一步优化这些界面的集成,以开发更高效、低成本的PEMWE。
文献信息
标题: Anode Engineering for Proton Exchange Membrane Water Electrolyzers
期刊: ACS Catalysis
DOI: 10.1021/acscatal.3c05162
原文链接: https://doi.org/10.1021/acscatal.3c05162
本文内容来源于网络等公开信息,新能源技术与装备整理,责任编辑:胡静,审核人:李峥
版权声明∶转载新能源网站内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,请添加小编微信号(msprocess)详细沟通。
碱性电解槽内产生的H2和O2需要用隔膜进行分隔开来,如果不把它们分隔开来,就会发生H2、O2混合,这样不但达不到生产h²的目的,还会带来安全隐患。
2024-07-09 氢能俱乐部
近日,新工绿氢推出的“天制一号”PEM电解槽,从10-500方不等,产品具有产氢纯度高,制氢成本低,对环境没有任何污染等优点。公司结合“PEM+ALK”理念提出了复合槽制氢理念,更好地适应多元环境的制氢要求。
2024-05-28 新工绿氢
以1000Nm³/h的碱性电解水制氢电解槽为例,说明对于碱性电解槽整体的设计与计算流程。 对于碱性电解槽来讲,需要输入的设计条件主要有电解槽制氢量、设计电流密度以及电解槽的有效活性面积。
2024-05-23 知乎112358132134
2024-11-02
2024-10-23
2024-11-07
2024-10-24
2024-10-24
2024-10-26
2024-11-05
西门子作为自动化和数字化领域的创新先驱,对氢能产业的布局和发展始终保持着敏锐的洞察力。在近期对西门子的一次采访中,西门子数字化工业集团化工行业总经理徐一滨、过程工业软件部中国区总经理孟广田博士以及西门子氢能业务拓展经理李想 ,向我们分享了他们对于氢能行业发展看法、化工行业跨界氢能“新赛道”的破局之道以及西门子的创新模式。
作者:吴梦晗 胡静