近日,工信部节能与综合利用司公示了《国家工业和信息化领域节能降碳技术装备推荐目录(2024年版)》(以下简称《目录》)。
其中,17项氢能技术入选。
17项氢能技术
1、技术名称:富氢碳循环氧气高炉低碳冶金技术
技术原理及简介:开发新型高炉和冶金煤气回收装置,高炉煤气经回收装置进行脱碳处理变成氢气。采用多介质复合喷吹技术,将加热后的氢气送入高炉作为冶炼还原剂,脱碳产生的二氧化碳通过碳捕集技术进行收集,充分利用煤气热值和化学能,实现冶金煤气循环利用和富氢全氧冶炼,比同容积高炉生产效率提高40%。
适用范围:钢铁行业长流程低碳炼钢。
2、技术名称:富氢低碳冶炼技术
技术原理及简介:开发冶金用氢气一体化大规模供应系统和高炉多模式喷氢装备,根据高炉冶炼反应工况自动控制氢气流量,氢气通过高炉风口或炉身下部喷吹到高炉内。利用氢代替碳作为炼铁过程还原剂及燃料,纯氢气喷吹量可达每小时1800立方米,降低焦比10%以上。
适用范围:钢铁行业高炉。
3、技术名称:大功率重卡车用燃料电池发电系统
技术原理及简介:采用氢燃料电池发动机替代柴油发动机,并使用工业副产氢气,全程无排放。采用低铂载量高性能膜电极,反应电压高,从根本上提高发电效率、降低生产成本。配合高功率电堆层叠组装和密封技术、系统控制和优化技术,提高发动机效率。发动机系统兼容热回收技术,低温时为车内供暖。
适用范围:适用于重载物流长途运输车辆。
4、技术名称:氢燃料分布式发电系统
技术原理及简介:开发燃料电池分布式发电系统,以氢气作为原料与空气中的氧气发生电化学反应发电。燃料电池系统产生的直流电经逆变器并升压后,接入10kV交流电网线。副产水蒸气由洁净水收集装置收集,通过冷凝器回收热能,获取常温液态水,全运行周期清洁无污染。设计自动调节控制系统,可实现故障电堆系统在降容条件下持续运行。
适用范围:氢储能发电系统。
5、技术名称:加氢站成套装备
技术原理及简介:采用加氢站成套装备,将不同来源的氢气通过压缩机增压储存至储氢瓶组,再由加氢机采用分级加注模式为氢燃料电池汽车加注氢气。自主开发液驱式氢气压缩机、隔膜式压缩机等关键增压设备,开展站控系统标准化设计。建立整站能量流动控制策略,智能控制加注过程,智能调整压缩机启停、储氢瓶组充装,实现加氢站全流程高效节能运行。
适用范围:加氢站和制加氢一体站建设及改造。
6、技术名称:氢能轨道交通用燃料电池动力系统
技术原理及简介:采用模块化理念设计大功率燃料电池动力系统,基于燃料电池的可靠性、耐久性、结构强度、噪声控制等优化设计技术,进行燃料电池系统的化工仿真与模拟、结构计算与设计、电气设计、控制算法研发。实现核心功能模块设计与开发、系统集成与优化控制、混合动力能量管理、故障诊断与寿命预测。通过多套燃料电池系统并联输出,满足氢能轨道交通车辆动力需求。
适用范围:氢能轨道交通行业。
7、技术名称:兆瓦级固体聚合物电解质电解水制氢技术
技术原理及简介:采用宽功率波动、快启动爬坡的固体聚合物电解质制氢技术和能瞬间反馈波动能源的电源模块,研制自洽于可再生能源宽功率范围波动特征的智能化整体控制系统,实现快速功率调节响应,解决电力波动对电解槽的冲击,实现电解系统的平稳运行。利用高密度电堆工艺设计优化制氢模块,采用变温吸附技术干燥提纯氢气,满足高质量用氢需求。
适用范围:可再生能源制氢工艺。
8、技术名称:氢气锅炉低氮燃烧技术
技术原理及简介:采用分级送气及配风方式,协同燃烧安全控制技术、浓淡燃烧技术、无死角设计、余热深度回收利用等技术,实现氢气燃烧器与锅炉本体之间的良好匹配。利用助燃风形成烟气内循环,与烟气外循环相结合,配合炉膛无死角结构,保证锅炉稳定高效燃烧及高效分级换热,实现低氮氧化物排放。
适用范围:氢气锅炉。
9、技术名称:镁基固态储运氢技术
技术原理及简介:利用镁基储氢合金材料的可逆吸放氢反应,通过高温导热油控制储氢装置内储氢合金的温度,结合氢气压力控制,实现镁基固态储氢装置的可控吸放氢过程。镁基固态储运氢车可常温低压存储和运输氢气,实现高效率、长周期储存氢气,储氢材料可循环使用,满足氢气储运需求。
适用范围:大规模氢储运装置。
10、技术名称:规模化风光离网直流制氢技术
技术原理及简介:采用风光发电全直流离网制氢总体技术方案,将风光发电通过中压直流技术输送 至化工园区。通过碱性电解槽和质子交换膜电解槽混合配置进行制氢,作为负载消纳可再生能源。通过储能、电解槽阵列优化运行策略和能量管理系统,使负荷与波动性风光出力匹配,实现整个系统稳定、经济运行。
适用范围:风光等新能源制绿氢工艺。
11、技术名称:绿色醇氢燃料在工业炉窑中的应用
技术原理及简介:采用醇氢炉窑,以绿色甲醇为燃料,利用炉窑余热,将其通过吸热和催化裂解为富氢混合气,提升燃料热值,再掺入炉膛内混合,实现快速燃烧。结合实际工况, 通过控制系统调节裂解器和燃烧器内甲醇含量,进而调节富氢混合气掺混比例,确保炉膛内燃料有效燃烧,提升燃料热值,提高热效率。
适用范围:工业炉窑。
12、技术名称:二氧化碳加氢制绿色航煤技术
技术原理及简介:采用一步法,以二氧化碳和氢气为原料制备芳烃,再经过精馏分离提取不同芳烃馏分,对低冰点馏分进行加氢精制合成环烷烃或链烷烃。收集以上产物,通过搭建实验平台将其与以生物质为碳源制备得到的绿色航煤组分、常规航煤组分等进行调配,得到适应不同来源需求的成品航煤调配方案。该技术可提高绿色航煤制备的高选择性与原料的高转化率。
适用范围:万吨级绿色航煤制备工艺。
13、技术名称:面向轨道交通的制储一体化移动供氢系统
技术原理及简介:移动供氢设备由撬装式甲醇转换制氢设备、低压固态储氢以及多级增压加注系统组成。通过催化剂将甲醇分解生产氢气,将钛合金作为储氢合金,采用模块化设 计使每个模组可单独吸氢和放氢。该系统满足不同流量的用氢需求,为轨道交通提供高效可靠的氢能制储一体化解决方案。
适用范围:轨道交通行业氢能利用。
14、技术名称:风光制绿氢合成氨技术
技术原理及简介:利用光伏发电和风力发电电解制氢生产合成氨,以质子交换膜(PEM)为电解质,纯水为反应物,并采用零间距结构电解槽。通过合理配置储能储氢,电解制氢装置产生的氢气和深冷空分制氮装置产生的氮气混合后进入合成氨装置。经压缩机压缩、预热、氨合成反应、余热回收、冷却分离后液氨产品送至氨储存单元储存。
适用范围:适用于绿电制绿氢工艺。
15、技术名称:生物质合成气制绿氢技术
技术原理及简介:采用脱碳提氢装置,以生物质合成气为原料,经过除油、加压、脱硫、脱碳、提氢等工艺制备合格工业氢气。原料气从除油塔输入经除油压缩后进变换装置,提 高氢含量,再经脱硫后分别进入真空变压吸附脱碳装置和原甲裂脱碳装置。一部分脱碳气经过焦炉煤气提氢装置直接得到产品氢,另一部分脱碳气经过甲裂提氢装置进一步经甲烷化后得到产品氢。工艺解吸气可进一步回收利用。
适用范围:生物质合成气制氢工艺。
16、技术名称:生物质气化-费托合成制备绿色航煤技术
技术原理及简介:采用新能源电解水制绿氢-费托合成工艺制备绿色航空煤油,优化集成风电光伏发电及加压流化床生物质气化系统工艺。利用绿氢取代灰氢、生物质绿碳取代化石碳源,最后通过高效费托合成工艺实现制备绿色航空煤油。电解水制氢装置根据新能源发电波动,实现“荷随源动”,达到分钟级负荷响应。
适用范围:绿色航煤制备工艺。
17、技术名称:富氢尾气综合利用制氢技术
技术原理及简介:采用气体分离提纯系统,以液化天然气富氢尾气为原料,提纯制备高纯氢气。原料由入口端进入吸附塔,依次经吸附、多级压力均衡降、顺放、逆放、冲洗、多级压力均衡升及最终升压等步骤,实现多次均压回收获得氢气。氢气再经调节阀和产品缓冲罐稳压后,进入不锈钢精密过滤器去除微量的颗粒物,最终输出高纯度氢气。主要用能设备为隔膜式压缩机,容积效率高。
适用范围:富氢尾气利用。
本文内容来源于:工信部,责任编辑:胡静,审核人:李峥
版权声明∶转载新能源网站内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,请添加小编微信号(msprocess)详细沟通。
本文在阐述绿氢供应体系建设必要性的基础上,剖析了绿氢供应体系建设面临的挑战,如绿氢资源与需求空间分布不匹配、绿氢生产与消费时间特性不匹配、现有体制机制及标准与绿氢供应体系不匹配;凝练了强化氢储运关键基础问题研究、加快氢储运技术装备攻关、提升氢储运装备安全检测技术水平等重点研究方向,力求以氢储运环节的高质量发展支撑绿氢供应体系建设。
2024-04-16 中国工程科学
4月14日下午,德国总理朔尔茨和代表团一起参观博世氢动力系统(重庆)有限公司。此次朔尔茨携环境、农业、交通3名内阁部长作为代表团成员一同访华,此外,由西门子、宝马、奔驰等重量级企业家组成的经济代表团也随同访华。
2024-04-16 环球网、@CGTN记者团
中国北京,2024年4月11日——日前,在ESIE 2024第十二届储能国际峰会暨展览会期间,全球能源管理和自动化领域的数字化转型专家施耐德电气与江苏阿诗特能源科技股份有限公司(以下简称“阿诗特能源”)签订战略协议。
2024-04-12 施耐德电气
2024-11-02
2024-11-07
2024-10-24
2024-10-24
2024-11-20
2024-10-26
2024-11-05
西门子作为自动化和数字化领域的创新先驱,对氢能产业的布局和发展始终保持着敏锐的洞察力。在近期对西门子的一次采访中,西门子数字化工业集团化工行业总经理徐一滨、过程工业软件部中国区总经理孟广田博士以及西门子氢能业务拓展经理李想 ,向我们分享了他们对于氢能行业发展看法、化工行业跨界氢能“新赛道”的破局之道以及西门子的创新模式。
作者:吴梦晗 胡静
评论
加载更多