自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。
锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。
在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。
在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。
二、动力电池系统、电芯的组成
动力电池系统
2.电芯
电芯就是单节的锂离子电池,由正极片、负极片、隔膜、电解液和结构件组成。详细见下表。
三、热失控的诱因
对于锂离子电池来说,失效反应的原因无外乎三个:内部短路、高温、过(电)压。这三个因素导致温度达到一定程度后,触发内部一系列的化学反应,进一步产生热量、气体,以致起火、爆炸。(最终都是归结到温度上,因此电芯的失效反应被称为“热失控”)
可以发现,一般情况下120℃及以下的温度,都是安全温度(不会发生起火、爆炸),60-120℃是锂离子电池劣化但安全的温度。导致发生起火、爆炸是需要瞬间达到120℃以上的,才是上图中的“诱因”。
1)内部短路,就是内部有异物将隔膜刺穿(仅10微米厚),导致内部正负极直接接触,瞬间产生大量的热量,这也是电池自燃的根本原因;
2)过充(过压),一般是三元正极材料过充至5.0-5.2V之间时,会具有强烈的氧化性,氧化电解液/隔膜,瞬间产生大量的热量;
3)高温,极端条件下从外部将电池包加热到120℃以上,或电池壳体的局部在瞬间接受到大量的热量(例如外电路通过壳体短路)。
四、引发自燃的条件
按照GBT31485中的滥用测试,以目前的电芯技术状态,一般都能通过的有以下几种:
而以目前技术条件,比较难通过的有以下几种:
可以发现,通过外部条件引发锂离子电池的剧烈反应还是比较难的(液压机挤压、针刺或大幅度过充)。但为什么还是会发生电池的自燃呢?笔者将其条件进行了梳理,如下:
本文内容来源于:锂电池安全在线,责任编辑:胡静,审核人:李峥
版权声明∶转载新能源网站内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,请添加小编微信号(msprocess)详细沟通。
酸铁锂电池具有良好的低温性能和安全性,其应用范围也在不断扩大。但是由于磷酸铁锂电池能量密度较低,以及原材料成本高,导致磷酸铁锂电池的价格较高,限制了磷酸铁锂电池的推广和应用。
2024-04-18 心灵充电站
储能电池的电芯技术是指储能电池中用于存储和释放电能的单元技术,主要包括电池的材料、结构、形状和尺寸等。电芯技术是储能电池性能的关键,直接决定了电池的能量密度、功率密度、循环寿命、安全性和成本等。
2024-04-18 动力电池BMS
电解液是锂电池的重要组成部分,用量不足或过量都会对电池性能产生负面影响。本文将分析电解液不足和过量对锂电池性能的影响,并探讨相应的解决方案。
2024-04-18 新能源技术与企管
2024-11-02
2024-11-07
2024-10-24
2024-10-24
2024-11-20
2024-10-26
2024-11-05
西门子作为自动化和数字化领域的创新先驱,对氢能产业的布局和发展始终保持着敏锐的洞察力。在近期对西门子的一次采访中,西门子数字化工业集团化工行业总经理徐一滨、过程工业软件部中国区总经理孟广田博士以及西门子氢能业务拓展经理李想 ,向我们分享了他们对于氢能行业发展看法、化工行业跨界氢能“新赛道”的破局之道以及西门子的创新模式。
作者:吴梦晗 胡静