常温常压下,氢以气体状态存在。高压下,氢结晶为固体。而超高压下固体氢的原子排列方式一直是未解之谜。
2025年5月14日,国际权威学术期刊《自然》发表一项重大突破:由中国科学家领衔的国际团队用X射线纳米探针首次“看见”固体氢的复杂晶体结构。这是目前世界上固体氢的最精细结构。
压力的升高,使氢的晶体结构趋于复杂。气体氢的分子随机散落在空间中。随压力升高(5GPa),氢分子像跳棋子一样层层排列,形成固体氢。压力再升高(212-245GPa),一部分氢原子会形成蜂窝状排列,于是固体氢呈现更复杂的结构:跳棋子和蜂窝间隔着层层叠起。
金属氢具有极高的能量密度,是氢核聚变的理想原料,应用潜力、战略意义巨大,被称为‘高压物理的圣杯’。想要找到金属氢,研究固体氢是必经之路。
如果说金属氢是“圣杯”,那么高压下固体氢结构就好比“圣杯”的杯座。此次中国科学家率先“看到”精细结构的固体氢,恰处于气体氢变成固体氢之后、金属氢形成之前的高压状态。
诺贝尔物理学奖得主维格纳等人1935年预测,氢在极高压下会变为金属氢。后有物理学家提出,让氢得以金属化的压力高达500GPa——这相当于一架停在针尖上的巨型喷气式飞机对针尖施加的力。
北京高压科学研究中心的实验室里,已完成实验的破碎金刚石样品被编上号、贴上标签,保存起来。
观测金属氢难度极大,因为氢金属化所需的超高压条件极为苛刻。我们将两颗超锋利的金刚石尖对尖,挤压中间的氢分子。用高亮度的X光穿透金刚石照射在高压氢上,X光与高压氢相互作用,就好比给固体氢‘拍照片’,得以窥见原子如何排列。
晶体结构的研究应是金属氢研究的核心。因为金属氢的奇异特性取决于其特殊的原子排列。这一发现对理解金属氢的形成路径与机制提供了关键依据。
本文内容来源于新能源技术与装备,责任编辑:胡静,审核人:李峥
版权声明∶转载新能源网站内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,请添加小编微信号(msprocess)详细沟通。
2025-06-30
2025-06-23
2025-06-18
2025-06-18
2025-06-23
2025-06-23
2025-06-18
氢能作为一种备受追捧的零污染高效能源,其稀缺性使得人们对其渴求不已。然而,能耗巨大的压缩过程以及极低温度下的液化环节,被视为通往氢能转型之路上的重大障碍。在此背景下,氨成为热门的替代选项,尽管这种物质带有些许气味,但它有望成为能源转型中的奇迹材料。
作者:Dominik Stephan
评论
加载更多