01 绿氢替代趋势逐渐显现
氢气作为二次能源,需要通过能量转化过程从煤、烃类和水等物质中提取。氢气制备途径多样,根据氢气制取过程中的碳排放量不同可以分为“灰氢”、“蓝氢”和“绿氢”。
“灰氢”指通过煤炭、石油、天然气等化石能源的重整制氢,和以焦炉煤气、氯碱尾气、丙烷脱氢(PDH)等为代表的工业副产氢,生产过程中释放大量的二氧化碳,但因技术成熟且成本较低,是当前主流制氢方式;“蓝氢”是在灰氢的基础上,将CO2副产品捕获、利用和封存(CCUS),减少生产过程中的碳排放,实现低碳制氢;“绿氢”是通过可再生能源(如风电、水电、太阳能)制氢、生物质制氢等方法制得的氢气,生产过程基本不会产生二氧化碳等温室气体,保证了绿氢的生产过程零排放。
根据国际能源署(IEA)最新公开统计数据:2021年全球氢气产量约9400万吨/年,氢能产量主要来源于化石能源制氢,占比高达81%,其中天然气制氢占62%、煤制氢占19%;低碳排放制氢占比仅0.7%,电解水制氢的产量仅为3.5万吨,仅占0.04%。由于化石能源制氢可为行业引入低成本氢源,近10年天然气制氢占比较大,我国氢气年产量约为3300万吨,主要由化石能源制氢和工业副产氢构成,其中煤制氢占62%、天然气制氢占19%、工业副产氢占18%,与我国“富煤贫油少气”的能源特征相符,可再生能源制氢规模还处于起步阶段,占比很小。在双碳背景下清洁能源加快发展,电解水制氢将逐步占主导地位,未来全球氢气将逐步转化为利用可再生能源电解制氢的方式进行供给。
02 绿氢制取
可再生能源电解水制氢为最成熟的路径
绿氢制取技术包括利用风电、水电、太阳能等可再生能源电解水制氢、太阳能光解水制氢及生物质制氢,其中可再生能源电解水制氢是应用最广、技术最成熟的方式。
电解水制氢
电解水制氢即通过电能将水分解为氢气与氧气的过程,该技术可以采用可再生能源电力,不会产生CO2和其他有毒有害物质的排放,从而获得真正意义上的“绿氢”。电解水制氢原料为水、过程无污染、理论转化效率高、获得的氢气纯度高,但该制氢方式需要消耗大量的电能,其中电价占总氢气成本的60%~80%。
电解水制氢技术主要包括碱性电解水(ALK),质子交换膜电解水(PEM)和固体氧化物电解水(SOE)以及其他电解水技术。前三者的基本原理如下图所示。
碱性电解水(Alkaline Water Electrolysis,ALK)制氢是指在碱性电解质环境下进行电解水制氢的过程,电解质一般为30%质量浓度的KOH溶液或者26%质量浓度的NaOH溶液。
碱性电解槽主要成本构成为电解电堆组件(45%)和系统辅机(55%);电解槽成本中55%是膜片及膜组件。依据行业内多家主流厂商的数据分析,碱性电解槽的2025年及2030年的主要技术参数和投资水平如下:
和碱性电解水制氢技术相比,PEM电解水制氢技术具有电流密度大、氢气纯度高、响应速度快等优点,PEM电解水制氢技术工作效率更高,易于与可再生能源消纳相结合,是目前电解水制氢的理想方案。但是由于PEM电解槽需要在强酸性和高氧化性的工作环境下运行,因此设备需要使用含贵金属(铂、铱)的电催化剂和特殊膜材料,导致成本过高,使用寿命也不如碱性电解水制氢技术。
PEM电解水制氢系统由PEM电解槽和辅助系统(BOP)组成。PEM电解槽由质子交换膜、催化剂、气体扩散层和双极板等零部件组装而成。电解槽的最基本组成单位是电解池,一个PEM电解槽包含数十至上百个电解池。
质子交换膜电解槽成本中45%是电解电堆、55%是系统辅机;其中电解电堆成本中53%是双极板;膜电极成本由金属Pt、金属Ir、全氯磺酸膜和制备成本四要素组成。由于PEM电解槽的质子交换膜需要150-200微米,在加工的过程中更容易发生肿胀和变形,膜的溶胀率更高,加工难度更大,主要依赖于国外产品。依据行业内多家主流厂商的数据分析,PEM电解槽的2025年及2030年的主要技术参数和投资水平如下:
其他的电解水技术例如阴离子交换膜(Anion Exchange Membrane,AEM)电解水技术,其与PEM的根本区别在于将膜的交换离子由质子换为氢氧根离子。氢氧根离子的相对分子质量是质子的17倍,这使得其迁移速度比质子慢得多。AEM的优势是不存在金属阳离子,不会产生碳酸盐沉淀堵塞制氢系统。AEM中使用的电极和催化剂是镍、钴、铁等非贵金属材料且产氢纯度高、气密性好、系统响应快速,与目前可再生能源发电的特性十分匹配。但AEM膜的机械稳定性不高,AEM中电极结构和催化剂动力学需要优化。AEM电解水技术处于千瓦级的发展阶段,在全球范围内,一些研究组织/机构正在积极致力于AEM水电解槽的开发,为了扩大这项技术的商业应用,仍然需要一些创新/改进。
1972年,日本学者 Fujishima A和Honda K首次报发现TiO2单晶电极光解水产生氢气的实验研究,开辟了光解水制氢的新途径,通过太阳能光解水制氢也被认为是未来制取零碳氢气的最佳途径。
光解水能否工业化取决于太阳能到氢(solar-to-hydrogen, STH)能量转换效率。光解水分为三种技术路线,一是光催化分解水,利用纳米粒子悬浮体系制氢,该种方式成本较低、易于规模化放大,但STH效率偏低(约1%)。高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等是这一路线后续研究的关键问题;二是光电催化分解水,在一些典型的光阳极半导体材料(BiVO4和Ta3N5等)体系上STH效率已超过2.0%;三是光伏-光电耦合体系,在三种途径里STH效率最高,在多个实验体系上已超过10%以上。最新报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其STH效率可达到22.4%,已达到工业化应用要求。但光伏电池成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,因而也是当前成本最高的技术路线(约300-400元/kg)。
西安交通大学是国内最早启动太阳能光催化分解水制氢研究的团队之一,率先建立了首个直接太阳能连续流规模化制氢示范系统,系统稳定运行超过200小时,同时制定了GB/T 26915-2011《太阳能光催化分解水制氢体系的能量转化效率与量子产率计算》标准。中国科学院大连化学物理研究所李灿研究团队一直在探索太阳能制氢规模化应用的示范。该团队借鉴农场大规模种植庄稼的思路,提出并验证了基于粉末纳米颗粒光催化剂体系的太阳能规模化分解水制氢的“氢农场”(Hydrogen Farm Project, HFP)策略,STH效率超过1.8%,是目前国际上报道的基于粉末纳米颗粒光催化分解水STH效率的最高值。
生物质制氢
热化学制氢是指将物质在高温下分解产生气体,再通过催化剂的作用将气体分解出氢气。该方法的优点是原料广泛,生产氢气的效率较高,且可以得到多种有用的副产物,如甲醇、乙醇、醋酸等。但由于高温条件下易产生焦化和积碳现象,所以需要采取高温快速反应的方法来解决。
2022年10月,我国首个生物质气化制氢多联产应用研究中试项目在安徽马鞍山一次“点火”成功。该项目全流程成本测算远远低于目前通用的电解水制氢项目,制备氢气纯度达99.99%,年产氢量11万平方米。产出的氢气可用于燃料电池发电和多业态氢能商业应用,能源利用率可达90%以上。
生物质制氢虽然取得了一定的突破,但是目前大部分的生物质制氢过程都是在小型设备上完成,要将其用于大规模的工业化生产还存在一定挑战。首先,生物质转化过程比较复杂,需要较高的技术支持。其次,由于生物质的特性及其在反应过程中的变化,制取的氢气质量可能受到一定影响,需要进一步研究和优化反应过程,提高氢气产量和质量。实现产氢过程的可控性,提高产氢速率和效率、节约生产成本、加快工业化进程是生物质制氢亟待解决的问题。从全球范围来看,生物质制氢技术发展还处于萌芽阶段。我国生物质制氢技术虽然起步较晚,但是近年来得到飞速发展,具有极大的发展潜力。
技术成熟持续探索新路线
合成氨是氢气和氮气在催化剂的作用下反应生成,以气态烃为原料的合成氨。国际上各公司采用的工艺方法有所不同,但基本生产过程没有发生大的改变,工艺流程基本相同。目前国内所应用的工艺多数是从国外引进,例如Kellogg、Topsoe、Casale、Braun、ICIAMV、ICILCA、KBR KAAP等工艺,其合成工艺的设计理念都是以提高氨净值和节能为最终目的。
目前绿氨大部分的制备方式基于Haber-Bosch合成法,用绿氢和氮气在催化剂作用下合成为绿氨,工艺主要分为三部分:氢气氮气压缩、氨合成及冷凝分离、氨压缩冷冻。
纯度合格的氮气与电解水产生的合格氢气按比例混合后(氢气:氮气=3:1),经合成气压缩机从低压(以2.2兆帕为例)逐级压缩,在末级与来自合成冷交换器的循环气体一起压缩,提升压力到14.5兆帕,送至氨合成工序。
氨在一个固定床的氨合成塔中合成生产,采用15兆帕设计压力下合成的工艺,两级氨冷,二次分氨,降低冷冻电耗。氨合成塔内件采用两轴两径,采用塔锅直连,废锅回收热量副产2.5兆帕的中压蒸汽。
氨压缩冷冻从氨合成工序第一、二氨冷器来的不同压力等级的气氨分别进入氨压缩机入口分离器内,三级分离器出口气氨再分别进入氨压缩机对应的一至三级进口,氨压缩机出口气氨升压至1.6兆帕后进氨冷凝器冷凝,冷凝后的液氨进入液氨受槽。在液氨受槽中冷凝下来的液氨分两股,一股经氨加热器与产品液氨换热,冷却后为氨合成工序第一氨冷器提供冷量,气氨进入三段入口分离器;另一股直接进入液氨储罐。循环气经回收冷量后与氢氮气混合重新进入合成塔。典型合成氨的工艺流程如下图所示。
采用可再生能源制备绿氢的方式合成氨,生产1吨氨理论上需要消耗0.18吨氢气,而制备绿氢的成本中电费和设备投资成本占比较大,目前的绿氨综合成本在3500元/吨左右,未来绿氨综合成本主要需要随着绿氢制备成本下降而进一步下降。
国内大型合成氨工业中如大型空分等可采用国内成熟的技术,低压合成氨技术亦步入国际先进水平,建成诸多大型合成氨基地,涌现了云天化、湖北宜化、华鲁恒升等一大批具有较高技术水平、较大生产规模的企业。
04 绿醇制取
甲醇是氢应用的另一大途径之一。甲醇作为一种基本的有机化工原料,用途十分广泛。甲醇可以用于合成纤维、甲醛、塑料、医药、农药、染料、合成蛋白质等化工产品,也可以用作甲醇燃料电池(DMFC)和甲醇发动机的液体燃料。甲醇还可以通过裂解释放出氢气,从而成为氢气储运的载体。
生物质制绿甲醇
生物质制甲醇主要有两种途径:一是采用生物质气化-合成气的途径,二是生物质发酵制甲烷再制甲醇。其中,生物质气化技术具备可持续生产绿色甲醇的潜力。
生物质气化属于非常复杂的热化学反应过程,通常包含干燥、热解、氧化和还原4个过程。将生物质原料进行预处理后进入气化炉,在热量的作用下,析出表面水分,在200~300℃时为主要干燥阶段。当温度升高到300℃以上时开始进行热解反应。在300~400℃时,生物质就可以释放出70%左右的挥发组份,热解反应析出挥发份主要包括水蒸气、氢气、一氧化碳、甲烷、焦油及其他碳氢化合物。氧化过程主要是从生物质热解中产生的一些可燃气体和物质在有限O2状态下发生燃烧和部分燃烧反应,主要为C和H氧化,均为放热反应,并为生物质干燥和热解提供能量,温度快速上升至1000℃以上,该过程一般在1000~1500℃温度下进行。还原过程较复杂,包括热解和氧化2个过程,气体混合物与焦炭相互作用,形成了最终合成气,有吸热也有放热反应,一般在600~1000℃下进行。此外还包含焦油重整,即从大分子焦油形成小分子碳氢化合物的一个过程,去除焦油防止催化剂失活,以获得具有合适甲醇合成特性的合成气。
生物质发酵制甲醇,是利用微生物将生物质厌氧发酵产生沼气,通过甲烷转化成氢气与二氧化碳合成甲醇,或将其中的二氧化碳分离,加氢重整,也可合成生物甲醇。受限于生物质气化技术,目前暂未实现大规模化工业应用。
绿电制甲醇主要以CO2为原料,其技术路线分为:绿电制绿氢耦合CO2制甲醇;CO2电催化还原制甲醇。其中,CO2电催化还原制甲醇工业化尚存一些关键性挑战,相比之下CO2加氢制甲醇被证明是最具可实施性和规模化的路线。
利用绿氢和可再生二氧化碳合成绿色甲醇,要求使用“可再生二氧化碳”,即来自于生物质能产生或从空气捕集的二氧化碳。绿氢与可再生二氧化碳经过高温高压合成绿色甲醇,尽管后续甲醇燃烧时还会产生二氧化碳,但是由于这些碳排放是经过循环捕集来的,所以全生命周期绿色甲醇的碳排放为零。
二氧化碳加氢制甲醇工艺流程主要分为三个部分:氢气制备、二氧化碳捕集、甲醇合成和精馏。氢气采用电解水产生的绿氢;二氧化碳多通过溶剂吸收法、变压吸附法、膜分离法、液化分离法等方法来捕集分离化工、炼钢等过程产生的二氧化碳;H2与CO2按照摩尔比3:1混合成合成气,经压缩机加压到一定压力进入甲醇反应器,较高的温度压力条件下,通过高选择性催化剂的作用,反应生成粗甲醇(甲醇和水的混合物),最终通过精馏分离得到纯度较高的甲醇产物。
中国科学院上海高等研究院和海洋石油富岛公司完成了5000吨/年的二氧化碳加氢制甲醇示范装置;中国科学院大连化学物理研究在兰州新区绿色化工院建成千吨级液态太阳燃料合成示范工程,后续将继续开展10万吨级的液态阳光工业化示范项目;西南化工研究设计院有限公司与鲁西化工集团公司研发了,并建设投产了5000吨/年的甲醇生产试验中试装置;
吉利自2005年开始研究甲醇汽车和甲醇发动机。目前掌握了甲醇燃料对汽车和发动机的相关影响机理,通过对甲醇的腐蚀性、溶胀性、清净性等特性的研究分析,成功地解决了甲醇汽车的耐醇、耐久性能等行业难题,形成专利200余件,甲醇汽车累计销量超3万辆,最高里程数超120万公里,累计行驶近100亿公里。
CO2加氢制甲醇工艺技术结合了可再生能源电解水制氢技术和二氧化碳资源化利用,可实现二氧化碳减排的同时又生产出用途广泛的绿色甲醇,实现了可再生能源到绿色液体燃料甲醇生产的全新途径。随着技术的进步,光伏板、电解水槽等关键设备成本将逐步降低,催化剂的性能也进一步提升,绿色甲醇产业必将迎来更加广阔的发展前景。
氨与甲醇除了作为基础化工产品外,还可以作为新型燃料和氢气载体,可作为风电和太阳能等可再生能源就地消纳的有效解决方案。虽然当前绿氨和绿甲醇的生产成本高于传统合成氨和甲醇,但在“双碳”政策刺激及资金投入的推动下,绿色氢基能源制取技术将迅速发展成熟,绿氨和绿色甲醇的产量有望大幅增长,未来的发展前景将非常广阔,将有潜力成为未来替代传统化石能源的主要形式。
本文内容来源于:水电总院,责任编辑:胡静,审核人:李峥
版权声明∶转载新能源网站内容,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱∶process@vogel.com.cn,请添加小编微信号(msprocess)详细沟通。
2023年以来,各大厂商相继发布300+Ah大电芯。涵盖300、302、304、305、306、314、315、320、322、325、340、360、375、560、580、628、1130等多个型号,其中314Ah占比最高。
2024-02-24 网络整理
犹他大学在TiFe合金储氢性能的研究上取得进展:技术突破:(1)TiFe0.9和TiFe0.95在室温下可活化,其吸氢动力学可在几个加氢循环内得到改善;
2024-02-22 国际储能技术与产业联盟
非裂解型化学吸附固态储氢材料能够同时兼具化学反应型储氢材料(例如MgH2,LiBH4等)高储氢密度以及物理吸附型储氢材料(例如多孔碳,石墨烯等)优异的动力学性能的双重优点。
2024-02-22 西安工业大学
2024-11-02
2024-10-23
2024-11-07
2024-10-24
2024-10-24
2024-10-26
2024-11-05
西门子作为自动化和数字化领域的创新先驱,对氢能产业的布局和发展始终保持着敏锐的洞察力。在近期对西门子的一次采访中,西门子数字化工业集团化工行业总经理徐一滨、过程工业软件部中国区总经理孟广田博士以及西门子氢能业务拓展经理李想 ,向我们分享了他们对于氢能行业发展看法、化工行业跨界氢能“新赛道”的破局之道以及西门子的创新模式。
作者:吴梦晗 胡静